4/CHE-250 (Th) Syllabus-2023

2025

(May-June)

FYUP: 4th Semester Examination

CHEMISTRY

(Inorganic Chemistry—I)

(CHE-250)

(Theory)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Write the expression for solubility product $(k_{\rm sp})$ of sparingly soluble salt ${\rm CaF_2}$ and calculate its $k_{\rm sp}$. Given the solubility of ${\rm CaF_2}$ is 2×10^{-4} mole/L.
 - (b) Define primary and secondary standard solutions. Give one example of each. 3

2.

D25/1287

(Turn Over)

(c)	What are complexometric titrations? What types of indicator and titrant are used in the above titration? Give example. Write the chemical equation involved	3	(c)	Calculate the equivalent mass of $KMnO_4$ in acidic medium (mass of $KMnO_4$ = 158) and also calculate the amount required to prepare 0·1 N of $KMnO_4$ in 250 cc volumetric flask.	3
(e)	in the standardization of hypo (Na ₂ S ₂ O ₃ ·5H ₂ O) using K ₂ Cr ₂ O ₇ (iodometric method) as well as iodometric method of determination of Cu ²⁺ . What is co-precipitation? How does it differ from post-precipitation?	3	(d)	H ₂ S is used as group reagent in group II and group III B in the analysis of cations in qualitative inorganic analysis. Why are group III B cations not precipitated in group II, all precipitates being in form of their sulphides?	2
(f)	Draw the structure of metal-EDTA complex. In what manner, the stability of the metal-EDTA complex varies with (i) the charge of the metal cation;		(e)	What do you understand by the terms 'permanganometry' and 'dichromatometry'? Give examples. 1½×2	=3
(a)	(ii) the pH of the medium? OR How does iodometry differ from iodimetry? Explain with the help of equations.	3	(f)	25 ml of $0.0020~M$ potassium chromate are mixed with 75 ml of $0.000125~M$ lead nitrate. Will a precipitate of lead (II) chromate form? ($k_{\rm sp}$ of lead (II) chromate is 1.8×10^{-14})	2
(b)	What are acid-base indicators? Explain why phenolphthalein cannot be used as an indicator in the titration of aqueous NH ₃ against dil. HCl.	3	(g)	The colour changes of acid and base indicator are explained on the basis of which theory? Outline the theory.	3

D25/1287

(Continued)

- 3. (a) What is meant by effective atomic number? Calculate the effective atomic number of cobalt in $[Co(NH_3)_6]^{3+}$ and Fe in $[Fe(CO)_5]$. (atomic number of Co = 27, Fe = 26)
 - (b) What is a chelating ligand? Write down the two applications of chelate formation.
 - (c) Draw the geometrical isomers of $Cr(NH_3)_3Cl_3$ and name them as per IUPAC nomenclature.
 - (d) Write down the important postulate of Werner's coordination theory. Why is the complex of CoCl₃·3NH₃ non-ionic according to this theory?
 - (e) Identify the kind of isomerism inhibit by the following isomers:
 - (i) $[Cr(NH_3)_6][Co(CN)_6]$ and $[Co(NH_3)_6][Cr(CN)_6]$
 - (ii) $[Co(NH_3)_5Cl]SO_4$ and $[Co(NH_3)_5SO_4]Cl$

- (f) What is ambidentate ligand? Giving example, show how it differs from bidentate ligand.
- (g) Explain the following with suitable examples:
 1½×2=3
 - (i) Hydrate isomerism
 - (ii) Linkage isomerism

OR

- **4.** (a) Define double salts and coordination compound with the help of suitable examples. 1½×2=3
 - (b) Write the IUPAC name of [Co(en)₂Cl₂]Cl and draw the structure of all isomers. Why does the transgeometry not exhibit optical isomerism?
 - (c) Draw all the possible isomers $[Ma_2 b_2 c_2]$.
 - (d) Define the following terms: $1 \times 3=3$
 - (i) Coordination complex
 - (ii) Ligand
 - (iii) Coordination number

D25/1287

(Continued)

3

3

3

3

2

D25/1287

(Turn Over)

2

3

- (e) Give the IUPAC name of the following complexes: 1×3=3
 - (i) $K_4[Fe(CN)_6]$
 - (ii) $\left[(C_2H_5)(CO)Fe \begin{array}{c} Co \\ C_0 \end{array} Fe(CO)(C_2H_5) \right]$
 - (iii) $[Fe(H_2O)_6]SO_4$
- (f) What are facial and meridional isomers? Explain with example and draw the isomers.
- (g) What are the criteria for a molecule to be optically active?
- 5. (a) Explain with example, what are—
 - (i) ionic organometallic compounds;
 - (ii) sigma bonded organometallic compounds.

Name them. Give one method of preparation of organolithium compound.

(b) Mention the advantage of organic precipitants to inorganic reagent. Which reagent is used in the precipitation of nickel? Draw the precipitated complex.

- (c) What are Grignard reagents? Give one method of its preparation. Write one chemical reaction to show its use in organic chemistry.
- (d) Give the IUPAC names of the following: 3
 - (i) $K[PtCl_3(C_2H_4)]$
 - (ii) $[(CO)_4Co-Co(CO)_4]$
 - (iii) Mn₂(CO)₁₀
- (e) Draw the structure and mention one application of each of the following compounds as precipitant: 1½×2=3
 - (i) α -Nitroso- β -naphthol
 - (ii) Cupron
- (f) Complete the following reactions: $1 \times 3 = 3$
 - (i) $R'X + RLi \longrightarrow$
 - (ii) $R_2Hg + 2Li \longrightarrow$
 - (iii) $RH + n BuLi \longrightarrow$

3

3

1

4

OR

6. (a) Why is alkyllithium compound known as super Grignard reagent? How does methyllithium react with the following?

1+3=4

3

3

3

3

3

- (i) Dry ice
- (\ddot{u}) $(C_5H_5)_2Zn$
- (iii) HCHO
- (b) On the basis of composition, define simple and mixed organometallic compounds, with one example of each.

(c) Give the structural formula of cupferron. Discuss the important application of cupferron in quantitative analysis.

(d) How are solvents classified into protic and non-protic solvents? Give example.

(e) Write the molecular formula of rhodamine B. Draw its structure and discuss how it is used in inorganic analysis.

(f) Give one method for the preparation of magnesium diphenyl. Write one property of magnesium diphenyl and draw its structure. 7. (a) Define significant figures. Give the answer of the following problems to the maximum number of significant figures:

(i) $50.00 \times 27.8 \times 0.1167$

(ii) $(2 \cdot 776 \times 0 \cdot 0050) - (6 \cdot 7 \times 10^{-3})$

(b) On replicate analysis of brass sample, the zinc content was found to be 33.27%, 33.34% and 33.09%. Calculate the standard deviation and standard deviation of mean for the analysis.

(c) Explain the significance of F-test in developing a new method in comparison to the accepted method of determination of analytical results.

(d) Mention the factors that are responsible for error in experimental measurements.

(e) Calculate the absolute error in the following:

 $(15.02 \pm 0.02) \text{ ml} \times (0.2000 \pm 0.0001) \text{ mmol ml}^{-1}$

(f) Discuss the propagation of determinate errors when it transmits through addition and subtraction in the final results through calculation.

D25/1287

(Continued)

D25/1287

(Turn Over)

3

31/2

3

21/2

3

OR

8. (a) Distinguish between accuracy and precision with an example.

(b) Which test would you perform to compare the precision of two sets of data obtained for a sample by two different analytical methods? The standard deviation from one set of 10 determination, S = 0.210 and for 8 determination by another method is 0.441. Is there any significant difference between the precision of two sets of results? (Corresponding F value for 9 and 7 degrees of freedom at 95% confidence limit is 3.68.)

(c) Find the value of

$$\frac{0.02856 \times 298.15 \times 0.112}{0.5785}$$

How many significant figures should be present in the answer and why?

(d) The following sets of weight were obtained:

28.7 mg, 30.2 mg, 29.6 mg, 28.6 mg Calculate the standard deviation of the individual values. (e) The following replicate molarities were obtained when standardizing a solution:

0.1057, 0.1081, 0.1055, 0.1066

Can one of the results be discarded as due to accidental error? (Q value for four observations is 0.76.)

3

2

(f) What type of error would you expect to occur while taking weight of a hygroscopic compound? What precaution may be taken to minimize such an error?

D25/1287

(Continued)

4

3

3

3

D25—1000/1287 4/CHE-250 (Th) Syllabus-2023